Chapters 1.4, 2.4 and 1.11 Length, Mass Capacity. Time and Travel Graphs

Chapter Objectives:

- Know suitable units needed to solve problems used in everyday contexts;
- Know relationships between metric units and how to convert between these units;
- Know how to convert between 12 hour clocks and 24 hour clock readings;
- Know how to read scales from analogue or digital instruments;
- Know how to sketch and read linear distance time graphs and how to calculate the speed from such graphs

4.1 The Metric system:

Units which measure lengths are:
meter (1 m -- fundamental unit),
decameter (1 dam=10 m), hectometer ($1 \mathrm{hm}=100 \mathrm{~m}$), Kilometer ($1 \mathrm{Km}=1000 \mathrm{~m}$)
decimeter ($1 \mathrm{dm}=0.1 \mathrm{~m}$), centimeter ($1 \mathrm{~cm}=0.01 \mathrm{~m}$) and millimeter ($1 \mathrm{~mm}=0.001 \mathrm{~m}$)

Units of mass are:
Kilogram (1 Kg -- fundamental unit)
gram ($1 \mathrm{~g}=0.001 \mathrm{Kg}$) and milligram ($1 \mathrm{mg}=0.001 \mathrm{~g}$)

Units of capacity (used to measure quantities of liquids) are:
Liter (1 L-fundamental unit)
Milliliter ($1 \mathrm{ml}=0.001 \mathrm{I}$)

Examples:

Do Ex 4.1 A (Book 1): 1, 2 and Ex 4.1 B (Book 1) : 1, 5, 6
Do Ex 4.1 A (Book 2): 1 and Ex 4.1 B (Book 2): 1 and 2 (as Homework Bonus)

4.2 Reading Scales:

The most important rule when reading scales is to calculate first the value of each division (or the unit) of the scale.

Example: See the two scales on page 37 (Book 1) :
scale 1: unit $=\frac{50}{5}=10$ and scale 2: unit $=\frac{10-5}{10}=0.5$ (be careful here, as this scale does not start at 0).
then from Ex. 4.2 A (Book 1) : 1, 2, 3, 4, 5 and 6 and from Ex 4.2 B (Book 1): 1, 2, 3 and 5.

4.3 Time (Chapter 11, Book 1):

The fundamental unit of measure of time is 1 hour (1 h).

$$
\text { day: } 24 \text { hours = } 1 \text { day }
$$

Other units of time: minute $(\mathrm{min}): 60$ minutes $=1$ hour

$$
\text { second }(\mathrm{sec}): 60 \text { seconds }=1 \text { minute }
$$

There are two ways to indicate a specific time of the day: the 12 - hour clock and the 24 - hour clock. The 12 hour clock uses a.m. for hours in the morning (12 a.m. - midnight to 12. p.m. midday) and p.m. for hours in the afternoon (12 p.m. - midday to 12 a.m. - midnight) .

With the 24 hours clock, times from 0000 to 1200 refer to morning, and times from 1200 to 2400 refer to afternoon.

Example:

- On the worked example on page 94 (Book 1):
a) Change the following times to 24 hour clock times:
i) 5 a.m.=
ii) 9 p.m. =
ii) 8.35 p.m. $=$
b) Change the following 24 hour times to 12 hour clock times:
i) $0730=$
ii) $1620=$
iii) 2345 =
- Then do Exercise 11.1 A (Book 1) : 1, 5 and 6 and Exercise 11.1 B (Book 1): 1, 2, 3 and 5 .

4.4 Travel Graphs:

The motion of an object can be displayed on a distance - time graph (which shows the position of the object at different times), which is also called a travel graph.

An object travelling at a constant speed has a linear distance time graph, and conversely, if an object has a linear distance time graph, then that object travels with constant speed.

This is because the speed of the object with a linear distance - time graph (over some time interval $\left[t_{A}, t_{B}\right]$ is : $\mathrm{v}_{A B}=\frac{\text { distance over }[\mathrm{AB}]}{t_{B}-t_{A}}=\frac{x_{B}-x_{A}}{t_{B}-t_{A}}$, which represents the slope of the linear distance time graph, and this is constant (it does not depend on the choice of the time interval $\left[t_{A}, t_{B}\right]$) : See for example the Figure on page 96 (Book 1) for an example of a linear distance - time graph and calculate the speed of the object for this graph.

Examples:

1. From Exercise set 4.3 (Book 2):

Exercise 1: Answers : a) 7.30 a.m. b) 10 a.m. c) 10.30 a.m.
d) speed $_{\mathrm{A}}=\frac{7 \mathrm{Km}}{3 \mathrm{hrs}}=\frac{7}{3} \mathrm{Km} / \mathrm{hr}=2 . \overline{3} \mathrm{Km} / \mathrm{hr}$
e) speed $_{B}=\frac{3 \mathrm{Km}}{1 / 2 \mathrm{hrs}}=6 \mathrm{Km} / \mathrm{hr}$
f) Person A, since the line has a higher slope (gradient)
2. From Exercise set 4.3 (Book 2) do exercise 2,3 and 4 and then:
3. Do Ex 11.2 A (Book 1).

In this example:
Speed $=\frac{80 \text { meters }}{10 \text { secs }}=8 \mathrm{~m} / \mathrm{sec}$

1) How long does the object takes to travel 50 m : from the graph it appears that time $=6 \mathrm{sec}$.
A more precise calculation is: speed $=\frac{\mathrm{d}}{\mathrm{t}} \rightarrow t=\frac{d}{\text { speed }}=\frac{50}{8}=\frac{25}{4}=6.25 \mathrm{secs}$
4. Similarly, solve parts 2-10 of this exercise, and Exercise sets 11.2 C and 11.2.D.
